Theoretical considerations on the "spine of hydration" in the minor groove of d(CGCGAATTCGCG).d(GCGCTTAAGCGC): Monte Carlo computer simulation.

نویسندگان

  • P S Subramanian
  • G Ravishanker
  • D L Beveridge
چکیده

A theoretical description of aqueous hydration in the minor groove of a B-form DNA is presented on the basis of a liquid-state Monte Carlo computer simulation on a system consisting of the oligonucleotide duplex d(CGCGAATTCGCG).d(GCGCTTAAGCGC) in a canonical B-form together with 1777 water molecules contained in a hexagonal prism cell and treated under periodic boundary conditions. The results are analyzed in terms of solvent density distributions. The calculated minor-groove solvent density shows considerable localization, indicative of discrete solvation sites and providing theoretical evidence for a well-defined ordered water structure. In the AATT sequence, this corresponds to the "spine of hydration" described by H. R. Drew and R. E. Dickerson [(1981) J. Mol. Biol. 151, 535-556] based on the x-ray crystal structure of the dodecamer hydrate. We find, however, that the calculated ordered water structure also extends into the CGCG flanking sequences, supported by the N2 hydrogen bond donors of the guanine residues and indicating that the spine of hydration could thus extend throughout the minor groove of a B-form DNA. This provides a possible explanation of the positive binding entropies observed by L. A. Marky and K. J. Breslauer [(1984) Proc. Natl. Acad. Sci. USA 84, 4359-4363] for both A.T and C.G sequences on the complexation of netropsin to the minor groove of DNAs. Implications of these results with regard to the thermodynamic stability of DNA in water and the sequence specificity of the minor groove hydration are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydration energy of Adenine, Guanine, Cytosine and Thymine : Monte Carlo simulation

The hydration of biomolecules is vitally important in molecular biology, so in this paper thesolvation energy and radial distribution function of DNA bases have been calculated by theMonte Carlo simulation.The geometries of isolated Adenine, Guanine, Cytosine, and Thyminehave been optimized using 6-31+G(d,p) basis function sets. These geometries then will be used inthe Monte Carlo calculation o...

متن کامل

The role of minor groove functional groups in DNA hydration.

Here we describe the crystal structure of modified [d(CGCGAATTCGCG)]2 refined to 2.04 A. The modification, which affects only the two thymines at the central ApT step, involves isosteric removal of the 2-keto oxygen atoms and substitution of the N1 nitrogen with carbon. The crystal structure reveals the ability of this modified thymine to effectively base pair with adenine in [d(CGCGAAtTCGCG)]2...

متن کامل

DNA bending and"structural"waters in major and minor grooves of A-tracts. Monte Carlo computer simulations

To elucidate the possible role of structural waters in stabilizing bent DNA, various conformations of AT-containing decamers, (A5T5)2 and A10:T10, were studied by Monte Carlo simulations. The duplexes were constrained to reproduce the NMR inter-proton distances for the A-tracts at two temperatures: ~5° and ~35°C. Analysis of the water shell structures revealed a strong correlation between the g...

متن کامل

Intrusion of Counterions into the Spine of Hydration in the Minor Groove of B-DNA: Fractional Occupancy of Electronegative Pockets

A sequence of ordered solvent peaks in the electron density map of the minor groove region of ApT-rich tracts of the double helix is a characteristic of B-form DNA well established from crystallography. This feature, termed the “spine of hydration”, has been discussed as a stabilizing feature of B-DNA, the structure of which is known to be sensitive to environmental effects. Nanosecond-range mo...

متن کامل

Exocyclic groups in the minor groove influence the backbone conformation of DNA.

Exocyclic groups in the minor groove of DNA modulate the affinity and positioning of nucleic acids to the histone protein. The addition of exocyclic groups decreases the formation of this protein-DNA complex, while their removal increases nucleosome formation. On the other hand, recent theoretical results show a strong correlation between the B(I)/B(II) phosphate backbone conformation and the h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 85 6  شماره 

صفحات  -

تاریخ انتشار 1988